Time- and Dose-Related Interactions between Glucocorticoid and Cyclic Adenosine 3',5'-Monophosphate on CCAAT/Enhancer-Binding Protein-Dependent Insulin-Like Growth Factor I Expression by Osteoblasts1.
نویسندگان
چکیده
Glucocorticoid has complex effects on osteoblasts. Several of these changes appear to be related to steroid concentration, duration of exposure, or specific effects on growth factor expression or activity within bone. One important bone growth factor, insulin-like growth factor I (IGF-I), is induced in osteoblasts by hormones such as PGE2 that increase intracellular cAMP levels. In this way, PGE2 activates transcription factor CCAAT/enhancer-binding protein-delta (C/EBPdelta) and enhances its binding to a specific control element found in exon 1 in the IGF-I gene. Our current studies show that preexposure to glucocorticoid enhanced C/EBPdelta and C/EBPbeta expression by osteoblasts and thereby potentiated IGF-I gene promoter activation in response to PGE2. Importantly, this directly contrasts with inhibitory effects on IGF-I expression that result from sustained or pharmacologically high levels of glucocorticoid exposure. Consistent with the stimulatory effect of IGF-I on bone protein synthesis, pretreatment with glucocorticoid sensitized osteoblasts to PGE2, and in this context significantly enhanced new collagen and noncollagen protein synthesis. Therefore, pharmacological levels of glucocorticoid may reduce IGF-I expression by osteoblasts and cause osteopenic disease, whereas physiological transient increases in glucocorticoid may permit or amplify the effectiveness of hormones that regulate skeletal tissue integrity. These events appear to converge on the important role of C/EBPdelta and C/EBPbeta on IGF-I expression by osteoblasts.
منابع مشابه
The cyclic adenosine 3',5'-monophosphate- and the glucocorticoid-dependent enhancers are targets for insulin repression of tyrosine aminotransferase gene transcription.
The pathway of gluconeogenesis is activated in liver shortly after birth and is controlled by glucagon and glucocorticoids, which stimulate, and insulin, which inhibits, the expression of genes coding for gluconeogenic enzymes. To understand the molecular basis of this cell type-specific and coordinate control, we analyzed the cis-regulatory elements of the tyrosine aminotransferase gene, which...
متن کاملRunt domain factor (Runx)-dependent effects on CCAAT/ enhancer-binding protein delta expression and activity in osteoblasts.
Transcription factor CCAAT/enhancer-binding protein delta (C/EBPdelta) is normally associated with acute-phase gene expression. However, it is expressed constitutively in primary osteoblast cultures where it increases insulin-like growth factor I synthesis in a cAMP-dependent way. Here we show that the 3' proximal region of the C/EBPdelta gene promoter contains a binding sequence for Runt domai...
متن کاملInvestigation on the Levels of IGF-I Receptor and IGF-I Binding Protein I in the Brain of Insulin Resistant Rats
Abstract Introduction: There is limited knowledge available on the metabolism of glucose in the brain, an insulin insensitive organ. Insulin receptors hybridize with insulin like growth factor receptor (IGF-I) to transduce the signals in different areas of the brain. In this article we aimed at investigating whether the expression of IGF-I receptor and IGF-I binding proteins (IGFBP1) is change...
متن کاملActivation Domains of CCAAT Enhancer Binding Protein : Regions Required for Native Activity and Prostaglandin E2-Dependent Transactivation of Insulin-Like Growth Factor I Gene Expression in Rat Osteoblasts
In osteoblasts, hormones such as prostaglandin E2 that activate protein kinase A increase the translocation of transcription factor CCAAT/enhancer binding protein (C/EBP ) from the cytoplasm to the nucleus where it rapidly induces IGF-I gene expression. In this study, we identified activation and suppression domains in C/EBP using native and heterologous gene promoter assay systems. We demonstr...
متن کاملTranscriptional regulation of the rat apelin receptor gene: promoter cloning and identification of an Sp1 site necessary for promoter activity.
The genomic structure and transcriptional regulation of the rat apelin receptor (APJR) were analysed by rapid amplification of 5' cDNA ends (5'-RACE), transient expression assays and DNA-protein interaction. Analysis of the 5'-flanking region of a rat genomic clone shows no TATA box, but a putative CAAT box and several putative binding sites for transcription factors are present. Two transcript...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 141 1 شماره
صفحات -
تاریخ انتشار 2000